Endo- and Exocyclic Substitutions in α -P₄S₃I₂

by Alexander Hepp and Roger Blachnik*

Institute of Chemistry, University of Osnabrück, Barbarastr. 7, D-49069 Osnabrück (Fax +49(541)969-2370, e-mail rblachni@rz.uni-osnabrueck.de)

Dedicated to Prof. Dr. Frank Seela on the occasion of his 60th birthday

Two isomers each of α -P₄S₂SeX₂ and α -P₄SSe₂X₂ (X = Cl, Br) have been identified by ³¹P-NMR spectroscopy in mixtures obtained from thermal reaction of PX₃ and P₄S₁₄Se_{1.6}. Systematic changes in chemical shifts and coupling constants with electronegativity of the ligand by exocyclic substitution and with alteration of the molecular geometry by the replacement of sulfur by selenium are reported.

Introduction. – Systematic changes in the ³¹P-NMR parameters with endocyclic substitution have been reported for the bicyclic α -P₄S₃I₂[1] and β -P₄E₃I₂[2], α -P₄E₃R₂ [3] (E=S, Se; R=carboxylate) and β -P₄E₃I(CHI₂) [4], as well as for the tricyclic P₅E₂X (X=Cl, Br, I) [5]. The influence of an exocyclic ligand exchange was investigated for α -P₄E₃XY [6] and P₅E₂X [5] (X, Y=Cl, Br, I). In contrast to exocyclic substitution in which changes of ³¹P-NMR data are mainly determined by the differences in electronegativities of the ligands, endocyclic replacements of S- by Seatoms causes changes in geometry.

Molecules α -P₄E₃X₂ are interesting because the symmetric position of their ligands X and their $[AB]_2$ and [ABCD] spin systems make them suitable probes for investigating the influence of such replacements. In both spin systems, the couplings between all P-atoms can be determined and, from these data, changes in the geometry of the P₄E₃ skeleton by the S/Se replacement can be qualitatively predicted. For the sixmembered ring in α -P₄S₃I₂, exists an optimum distance P_A \cdots P_C (*Fig.*). Replacement of S by the larger Se-atom as the bridge E_a between P_A and P_C has a pronounced effect on the relative stability of the different isomers of P₄S_{3-n}Se_nX₂ and their ³¹P-NMR parameters [3].

Figure. Ring-position labels for α -P₄E₃X₂

In this paper, a detailed ³¹P-NMR investigation of α -P₄S_nSe_{3-n}X₂ (n = 1,2) was performed. The findings support statements made in previous papers regarding changes in geometry of the skeleton resulting from S/Se replacement [2–4].

Results and Discussion. – 1. *Spectral Assignment*. The spectra of α -P₄S₃X₂[7] and α -P₄Se₃X₂ [8] have been assigned previously. The ³¹P-NMR spectra of α -P₄E₃X₂ (E = S and Se) were of two types: those having symmetric spin systems [*AB*]₂ and those having unsymmetric spin systems [*ABCD*].

The *A* and *B* parts of the spin systems $[AB]_2$ were identified in the spectra with the aid of their relation by mirror symmetry. The *multiplets* due to the P-atoms P_B and P_D carrying the ligand were distinguished from the bridgehead nuclei P_C by the large downfield shift. The shift in the range 162–171 ppm can be assigned to the P-atom carrying Cl in the dichloride, and that in the range 151–157 ppm can similarly be assigned to the dibromide. The signals of the bridgehead atoms P_A are typically found below 135 ppm.

In the unsymmetric compounds, the shift of a P-nucleus bearing a halogen ligand can be assigned as above. The assignment of the shift for the bridgehead P-atom, to which it is coupled with a large ¹J constant, follows consequently. The decision whether the *multiplets* belong to P_A/P_C or P_B/P_D was made according to the sizes of couplings they shared, as described for other α -P₄S₃X₂ compounds [7][8].

Further discrimination was achieved on the basis of the value of the ²*J* bridge coupling constants. Previous investigations have shown that the values of ²*J*(P–S–P) constants are larger by *ca.* 10 Hz than those of the respective ²*J*(P–Se–P) coupling constants and values of ${}^{2}J_{AD}$ and ${}^{2}J_{BC}$ for the S-compounds are larger by *ca.* 6 Hz compared to those of the corresponding Se-derivatives [7][8]. For each compound initial analysis was followed by iterative fitting with the program NUMARIT [9]. Simulation and comparison of the calculated and measured spectra were performed with the programs 1D Win NMR and Win Daisy [10][11].

Though some *multiplets* were overlapping, most of the transitions (*Table 1*) were found *via* the observed splittings measured in the readily visible part of the spectrum of each compound. The interpretation of the spectra of α -P₄E₃Cl₂ was complicated by the low concentrations of its isomers in the sample.

	Fraction of transitions observed							
Compound	$\delta(P_A)$	$\delta(P_{B)}$	$\delta(P_{\rm C})$	$\delta(P_D)$	Total	r.m.s. [Hz]		
$\alpha - P_4 S_3 Br_2$	12/12	12/12	$=\delta(\mathbf{P}_{\mathrm{A}})$	$=\delta(P_B)$	24/24	0.08259		
α -P ₄ S ₂ Se _a Br ₂	10/12	10/12	$=\delta(P_A)$	$=\delta(P_B)$	20/24	0.43645		
α -P ₄ S ₂ Se _b Br ₂	8/8	8/8	8/12	8/12	32/40	0.04521		
α -P ₄ S _d Se ₂ Br ₂	6/8	7/8	8/10	8/9	29/35	0.03460		
α -P ₄ S _a Se ₂ Br ₂	8/12	8/12	$=\delta(\mathbf{P}_{A})$	$=\delta(P_B)$	16/24	0.10693		
α -P ₄ Se ₃ Br ₂	7/12	8/12	$=\delta(P_A)$	$=\delta(P_B)$	15/24	0.10645		
α -P ₄ S ₃ Cl ₂	9/12	8/12	$=\delta(\mathbf{P}_{\mathbf{A}})$	$=\delta(P_B)$	17/24	0.22458		
α -P ₄ S ₂ Se _a Cl ₂	11/12	10/12	$=\delta(\mathbf{P}_{A})$	$=\delta(P_B)$	21/24	0.54224		
α -P ₄ S ₂ Se _b Cl ₂	4/8	7/8	6/8	6/8	27/32	0.07506		
α -P ₄ S _d Se ₂ Cl ₂	6/8	6/8	8/8	8/8	28/32	0.11900		
α -P ₄ S _a Se ₂ Cl ₂	11/12	11/12	$=\delta(\mathbf{P}_{A})$	$=\delta(P_B)$	22/24	0.39403		
α -P ₄ Se ₃ Cl ₂	12/12	12/12	$=\delta(\mathbf{P}_{\mathrm{A}})$	$=\delta(P_B)$	24/24	0.42537		

Table 1. Iterative Fitting of NMR Data of α -P₄E₃Br₂ and α -P₄E₃Cl₂ (E = S, Se)

2. Relative Yields of the Compounds. Relative amounts (in mol-%) of the different compounds, estimated by integration of the NMR signals, were: 15.3% PBr₃, 29.0% α -P₄E₃Br₂, and 50.1% P₄E₃ for α -P₄E₃Br₂ and 2.6% PCl₃, 11.5% α -P₄E₃Cl₂, and 85.6% P₄E₃ for α -P₄E₃Br₂.

In the same way the amount of P_4E_3 could be separated into different contributions of the different $P_4S_{3-n}Se_n$ species. The molar ratios P_4E_3/P_4Se_3 found for X = Br were $P_4S_3/P_4S_2Se/P_4SSe_2$ 5.0 : 8.3 : 4.5, and for X = Cl, $P_4S_3/P_4S_2Se/P_4SSe_2$ 3.5 : 6.9 : 4.4. These values show that the solutions contain more sulfur than the educts. The change in Se content is due to the tendency to form insoluble products in the reactions in which P and Se are involved.

Table 2 gives the NMR-spectral parameter of α -P₄E₃Br₂ and α -P₄E₃Cl₂. The labelling of the atomic positions used in the *Tables* is shown in the *Figure*.

	Chemical shifts δ [ppm]			Coupling constants J [Hz]						
α -P ₄ E ₃ X ₂	P _A	P _B	P _C	P _D	${}^{1}J_{AB}$	¹ <i>J</i> _{CD}	${}^{2}J_{AC}$	${}^{2}J_{AD}$	${}^{2}J_{BC}$	${}^{3}J_{BD}$
Bromides										
α -P ₄ S ₃ Br ₂	132.64	151.69	132.64	151.69	-254.31 (3)	-254.31 (3)	70.19 (5)	19.77 (2)	19.77 (2)	11.66 (5)
α -P ₄ S ₂ Se _a Br ₂	119.98	151.91	119.98	151.91	-255.1 (2)	-255.1 (2)	60.1 (3)	24.0 (1)	24.0 (1)	8.0 (3)
α -P ₄ S ₂ Se _b Br ₂	138.19	154.37	121.82	155.04	-254.86(3)	-252.23 (3)	82.01 (3)	20.19 (3)	14.72 (3)	11.22 (3)
α -P ₄ S _d Se ₂ Br ₂	124.72	154.76	106.38	155.67	-255.34(2)	-252.65(2)	71.36 (2)	24.93 (2)	18.60 (3)	7.95 (2)
α -P ₄ S _a Se ₂ Br ₂	127.19	156.74	127.19	156.74	-252.5 (9)	-252.5 (9)	94.54 (7)	15.16 (4)	15.16 (4)	10.30 (6)
α -P ₄ Se ₃ Br ₂	110.93	157.54	110.93	157.54	-251 (1)	-251 (1)	83.57 (7)	20.12 (4)	20.12 (4)	7.13 (7)
Chlorides										
α -P ₄ S ₃ Cl ₂	133.55	162.34	133.55	162.34	-261.3 (3)	-261.3 (3)	66.6(1)	20.51 (7)	20.51 (7)	10.0(1)
α -P ₄ S ₂ Se _a Cl ₂	121.19	162.10	121.19	162.10	-263.0(2)	-263.0(2)	56.9 (4)	24.3 (2)	24.3 (2)	6.3 (3)
α -P ₄ S ₂ Se _b Cl ₂	139.32	167.84	123.55	166.21	-263.47(7)	-259.86 (5)	78.21 (5)	20.02 (5)	14.93 (5)	9.25 (6)
α -P ₄ S _d Se ₂ Cl ₂	126.17	167.65	108.43	166.43	-264.19(7)	-260.54(7)	68.06 (7)	24.79 (8)	18.97 (9)	6.5 (1)
α -P ₄ S _a Se ₂ Cl ₂	129.19	170.84	129.19	170.84	-261.0(2)	-261.0(2)	90.5 (2)	15.4 (1)	15.4 (1)	7.8 (3)
α -P ₄ Se ₃ Cl ₂	113.27	171.11	113.27	171.11	-261.5 (2)	-261.5 (2)	80.0 (2)	19.4 (1)	19.4 (1)	4.4 (2)

Table 2. ³¹*P*-*NMR*-*Data of Isomers of* α -*P*₄*E*₃*X*₂

The total number of P–S, P–Se, and P–X bonds does not change in compounds with equal numbers of S- and Se-atoms. The ratio of α -P₄S₃X₂/ α -P₄S₂SeX₂/ α -P₄Se₂X₂/ α -P₄Se₃X₂ should, therefore, correspond to a statistical distribution 1:3:3:1. The experimental ratios (*Table 3*) were 12:37:40:12 in α -P₄E₃I₂ [1], 11:36:38:17 in α -P₄E₃Br₂ and 6:27:47:20 in α -P₄E₃Cl₂, approximately as expected. The relief of ring strain achieved by increasing the size of the six-membered ring *via* substitution of S by Se in position E_b or E_d may account for the preferential generation of Se-rich isomers.

Table 3. Relative Yields of Isomers of α -P₄E₃X₂ (mol-%)

Х	α -P ₄ S ₃ X ₂	α -P ₄ S ₂ Se _a X ₂	α -P ₄ S ₂ Se _b X ₂	α -P ₄ S _d Se ₂ X ₂	α -P ₄ S _a Se ₂ X ₂	α -P ₄ Se ₃ X ₂
I	11.9	3.0	33.5	11.0	28.8	11.9
Br	10.5	3.9	31.3	13.7	23.8	16.8
Cl	6.0	5.0	22.4	17.4	29.4	19.9

Within one pair of isomers the ratio of unsymmetric/symmetric isomers should be 2:1, because in the unsymmetric α -P₄E₃X₂ two permutations are possible instead of one in the symmetric compound.

The relation between unsymmetric and symmetric α -P₄E₃X₂ is determined mainly by the bond angle at E_a. Substitution of S by Se decreases the strained bond angle in α -P₄S₃X₂, and substitution of Se by S increases it in α -P₄Se₃X₂. The first substitution is unfavorable, whereas the second one is favorable; therefore, the ratio of symmetric/ unsymmetric isomer is small in α -P₄S₂SeX₂ (*ca*. 0.2) and large in α -P₄SSe₂X₂ (*ca*. 1.6). A detailed discussion of this phenomenon was given by *Blachnik et al.* [1].

3. ³¹*P-NMR Parameters*. As reported in preceding papers [12][13], the ³¹*P-NMR* data of α -P₄E₃Br₂ and α -P₄E₃Cl₂ are compared with those of α -P₄E₃I₂.

3.1. *Halogen Substitution*. The changes in chemical shifts of all P-atoms and some coupling constants are determined by the change in electronegativity differences in going from I to Cl.

The effects of these replacements on the values of the ³¹P chemical shifts and P,P coupling constants are presented in *Table 4*. These values are obtained by substracting each of the ³¹P-NMR data of α -P₄E₃I₂ from those of the corresponding data of α -P₄E₃X₂ (X = Cl, Br). The changes in chemical shifts and coupling constants of bromides and chlorides caused by substitution of I can be divided for each in two groups, one in which P-atoms carrying the halogen have a sulfur neighbor and the other with P-atoms with a Se-neighbor. In both groups, the changes in NMR parameters in the different isomers are remarkably constant for each of their parameters. The changes of the ¹*J* coupling constant in a five-membered ring of α -P₄E₃X₂ with S in position E_b or E_d is contained in the column ¹*J*(P–PS) of this table, those with Se in this position in the column ¹*J*(P–Se).

	$\Delta \delta$ [ppm]					⊿J [Hz]		
	$P_{(B/D)-S}$	$P_{(B/D)-Se}$	$P_{(A/C)-S}$	P _{(A/C)-Se}	${}^{1}J_{\rm P-PS}$	${}^{1}J_{\rm P-PSe}$		
Br	26.2	32.1	4.3	5.4	- 11.1	- 12.4		
Cl	36.8	45.7	5.4	7.5	-18.6	- 21.3		

Table 4. Averaged Changes in NMR Parameters of α -P₄E₃X₂ on Halogen Substitution

All chemical shifts increase nearly linearly with increasing electronegativity of the ligand $(I \rightarrow Cl)$. The chemical shifts of the P-nuclei bound to S are approximately given by

$$\delta_{P(B,D-S)} = 74.6 \chi_X - 70.7$$

those bound to Se by

$$\delta_{P(B,D-Se)} = 92.7 \chi_X - 121.2$$

where χ is *Pauling*'s electronegativity. The coupling constants ¹*J* become more negative when the substituent is changed from I to Cl, *i.e.*, with increasing electronegativity of the substituent. This behavior of the ¹*J* coupling constants is expected from *Walsh* rules [14] and was previously observed for other ¹*J*(P–P) couplings [15–17]. The value of the bridge coupling ²*J*_{AC} decreases with increase in halogen electronegativity. Such an influence of electronegativity on ${}^{2}J$ coupling constants was also reported by *Verkade* [18], and *Schuhmann* and *Kroth* [19].

In chemical shifts and in ${}^{1}J$ and ${}^{2}J_{AC}$ couplings, the changes of NMR parameters are larger for the I/Cl substitution than for the I/Br replacements. The changes in couplings ${}^{2}J_{AD}$, ${}^{2}J_{BC}$, and ${}^{3}J_{BD}$ do not correlate with electronegativity. The change in the bridge coupling ${}^{2}J_{AC}$ is mainly due to the change in electronegativity of the halogen and is thus nearly constant within bromides (-4.2 Hz) or chlorides (-7.8 Hz).

3.2. Chalcogen Substitution. As shown in the Scheme, the replacement of sulfur by selenium may be classified in three groups: *i*) $a_1 - a_3$ substitution in the bridging position E_a , *ii*) b_1 or b_2 (at E_b) as the first, *iii*) and d_1 or d_2 (at E_d) as the second replacement, respectively, in the six-membered ring.

Scheme. Sequence of Replacement of S by Se in α -P₄S_nSe_{3-n}X₂ (a₁-a₃ at position E_a, b₁-b₂ at E_b, d₁-d₂ at E_d)

The effects of these substitutions are given in *Table 5*. It is completed by corresponding data of $P_4E_3I_2$ [1]. The values in these tables are obtained by subtracting each of the ³¹P-NMR data of the Se-rich isomers from those of the corresponding S-rich isomers. Changes in each of the measured chemical shifts and coupling constants were remarkably constant within each of these groups, independent of the character of the halogen ligand.

In accord with the C_2 symmetry of the molecules, changes in one parameter caused by a b₁ or b₂ replacement are very similar to changes in the corresponding parameter caused by a d₁ or d₂ replacement, *e.g.*, as revealed by the changes in ${}^{1}J_{AB}$ compared with ${}^{1}J_{CD}$ caused by these substitutions. This effect was already observed in α -P₄E₃I₂ [1].

The bond angles at the chalcogen bridge E_a are smaller for E = S than for E = Se. This is reflected by the changes in ${}^2J_{AC}$ to less positive values for all substitutions $a_1 - a_3$. Like ${}^2J_{AC}$, the coupling constants ${}^2J_{BC}$ and ${}^2J_{AD}$ become less positive by almost the same amount as the chalcogen transmitting the coupling is changed from S to Se, and the bond angle at the chalcogen atom consequently decreases (b_1/b_2 and d_1/d_2 replacements, respectively).

A second effect of the chalcogen substitution at E_b and E_d is an enlargement of the bond angle at E_a by introducing Se in the six-membered ring. This replacement is reflected in changes in ${}^2J_{AC}$ of a nearly equal order of magnitude as those for the replacements a_1-a_3 , however, in the opposite sense. Thus, the bond angle at E_a has a larger influence on the value of ${}^2J_{AC}$ than does the nature of the chalcogen atom (S or Se).

The increase in bond angle at a P-atom as a S-atom is replaced by a Se-atom in a non-adjacent position leads to a shift of its NMR signal to lower field. Such shifts are

	a1	a2	a3	b1	b2	d1	d2
⊿δ [ppm]							
P _A Cl	- 12.4	- 13.2	- 15.9	5.8	5.0	-10.1	- 12.9
Br	-12.7	- 13.5	-16.3	5.6	4.7	-11.0	- 13.8
Ι	- 13.4	-16.1	-16.8	5.6	4.9	-12.2	-15.0
P _B Cl	-0.2	-0.2	0.3	5.5	5.6	3.0	3.5
Br	0.2	0.4	0.8	2.7	2.9	2.4	2.8
Ι	1.3	1.9	2.4	- 3.5	-2.9	2.2	2.6
P _c Cl	-12.4	-15.1	- 15.9	-10.0	-12.8	5.6	4.8
Br	-12.7	-15.4	-16.3	-10.8	- 13.6	5.4	4.6
Ι	-13.4	-16.1	-16.8	- 12.3	-15.0	5.6	4.9
P _D Cl	-0.2	0.2	0.3	3.9	4.3	4.6	4.7
Br	0.2	0.6	0.8	3.4	3.8	1.7	1.9
Ι	1.3	1.9	2.4	3.0	3.5	-4.2	- 3.8
<i>∆J</i> [Hz]							
${}^{1}J_{AB}$ Cl	-1.7	-0.7	-0.5	-2.2	-1.2	2.5	2.7
Br	-0.8	-0.5	0.8	-0.6	-0.2	2.4	3.6
Ι	-0.1	0.1	0.2	1.0	1.1	2.8	3.0
${}^{1}J_{CD}$ Cl	-1.7	-0.7	-0.5	1.4	2.4	- 1.1	-0.9
Br	-0.8	-0.4	0.8	2.1	2.5	-0.3	0.9
Ι	-0.1	0.0	0.2	2.5	2.6	1.3	1.5
${}^{2}J_{AC}$ Cl – 9.	6 - 10.2	-10.5	11.7	11.1	12.3	12.0	
Br	-10.1	-10.7	-11.0	11.8	11.3	12.5	12.2
Ι	-10.3	- 11.1	-11.7	11.5	10.8	12.6	11.9
${}^{2}J_{AD}$ Cl	3.8	4.8	4.0	-0.5	0.5	- 4.6	- 5.4
Br	4.2	4.7	5.0	0.4	0.9	-5.0	-4.8
Ι	4.2	4.7	3.9	1.0	1.5	- 5.2	-6.0
${}^{2}J_{BC}$ Cl	3.8	4.0	4.0	- 5.6	- 5.3	0.5	0.5
Br	4.2	3.9	5.0	- 5.0	- 5.4	0.4	1.5
Ι	4.2	3.8	3.9	-4.9	- 5.3	0.8	0.9
${}^{3}J_{BD}$ Cl	- 3.7	-2.8	- 3.4	-0.8	0.2	-1.4	-2.0
Br	- 3.6	- 3.3	- 3.2	-0.4	-0.1	- 0.9	-0.8
Ι	-4.2	- 3.4	- 3.7	0.2	1.0	-0.5	-0.8

Table 5. Changes in NMR Parameters by Chalcogen Substitution in α -P₄S_{3-n}Se_nX₂

observed for $\delta(P_A)$ or $\delta(P_C)$ in the b_1/b_2 or d_1/d_2 substitutions, and for $\delta(P_B)$ or $\delta(P_D)$ in the a_2/a_3 or d_1/d_2 replacements, respectively. This effect can be masked by the effect of the electronegativity difference between S and Se. A replacement of S by Se at E_b causes similar changes of the angles $P_B - P_A - E_a$ and $E_b - P_C - E_a$. An effect on $\delta(P)$ is observed only for P_A (b_1 or b_2), and is compensated for P_C by the shielding effect of Se_b. The same shielding accounts also for the high-field shift of $\delta(P_A)$ and $\delta(P_C)$ for all S/Se substitutions in position E_a .

Experimental Part

All operations for the synthesis were carried out under Ar by *Schlenk* methods. CS_2 was dried by distillation from P_4O_{10} .

The conventional method for the syntheses of α -P₄E₃X₂ (E = S, Se; X = Cl, Br) is the replacement of I in α -P₄E₃I₂ with organometallic or metal halides [6][20] in CS₂ solution. This method has a disadvantage: when the reaction is finished the soln. contains the desired product together with α -P₄E₃IX and unreacted α -P₄E₃I₂, which complicate interpretation of the ³¹P-NMR spectra. A more useful route to α -P₄E₃X₂ is the high-temp. synthesis from P₄E₃ and PX₃. Thus, P₄S_{1.6} was prepared by heating the elements in this stoichiometric ratio at 250° in an evacuated and sealed quartz ampoule. The reaction product was recrystallized from CS₂. In a typical

experiment, 1.5 g of $P_4S_{1,4}Se_{1,6}$ and the stoichiometric amount of PX_3 were filled into a quartz ampoule, which was evacuated and sealed. The sample was subjected to a slow heating program, first annealed for 24 h at 120°, then the temp. was increased at a rate of 10°/h to 250°, the sample was annealed at this temp. for 48 h, heated slowly to 350°, and annealed at 350° for two weeks. The reaction was judged complete when no droplets condensed on the walls of the ampoules on cooling. Soluble products were extracted by stirring in CS₂ at r.t. for 6 h. After filtration, the ³¹P-NMR spectra of the solns. were measured.

³¹P-NMR Spectra: *Bruker AC-250* spectrometer, 101.5 MHZ, in 5-mm diameter tubes with precision capillaries containing C_6D_6 for locking; chemical shifts δ in ppm relative to 85% aq. H₃PO₄.

The Deutsche Forschungsgemeinschaft and Fonds der Chemie are acknowledged for financial support.

REFERENCES

- [1] R. Blachnik, P. Lönnecke, B. W. Tattershall, J. Chem. Soc., Dalton Trans. 1992, 3105.
- [2] P. Lönnecke, R. Blachnik, Z. Anorg. Allg. Chem. 1993, 619, 1257.
- [3] R. Blachnik, A. Neto, Z. Anorg. Allg. Chem. 1997, 623, 524.
- [4] B. W. Tattershall, R. Blachnik, A. Hepp, Polyhedron 1995, 14, 1779.
- [5] A. Hepp, Dissertation, Universität Osnabrück, 1998.
- [6] R. Blachnik, K. Hackmann, Phosphorus, Sulfur and Silicon 1992, 65, 99.
- [7] B. W. Tattershall, J. Chem. Soc., Dalton Trans. 1987, 1515.
- [8] B. W. Tattershall, J. Chem. Soc., Dalton Trans. 1991, 483.
- [9] A. R. Quirt, J. S. Martin, K. M. Worvill, NUMARIT, Version 771, 1977 SERC NMR Program Library, Daresbury.
- [10] 1D WinNMR, Bruker Franzen Analytik, 1996.
- [11] WinDaisy, Bruker Franzen Analytik, 1996.
- [12] R. Blachnik, P. Lönnecke, B. W. Tattershall, Z. Anorg. Allg. Chem. 1994, 620, 1115.
- [13] B. W. Tattershall, R. Blachnik, A. Hepp, Polyhedron 1995, 14, 1179.
- [14] A. D. Walsh, Disc. Faraday Soc. 1947, 2, 18.
- [15] W. McFarlane, A. J. Nash, J. Chem. Soc., Chem. Commun. 1969, 127.
- [16] G. Mavel, in 'Annual Reports on NMR Spectroscopy', Ed. E. F. Mooney, Academic Press, New York, 1973, Vol. 5b, p. 1.
- [17] E. F. Finer, R. K. Harris, in 'Progress in NMR Spectroscopy', Vol. 6, Pergamon Press, Oxford, 1971, p. 61.
- [18] J. G. Verkade, Coord. Chem. Rev. 1972, 9, 1.
- [19] H. Schumann, H. J. Kroth, Z. Naturforsch. B 1977, 32, 769.
- [20] E. Fluck, S. Yutronic, W. Haubold, Z. Anorg. Allg. Chem. 1970, 420b, 247.

Received August 28, 1999